/* Bài toán "Tháp Hà Nội"
Tương truyền rằng ngày xửa ngày xưa, lâu lắm rồi, ở một vùng xa xôi viễn đông, thành phố Hà Nội của Việt Nam, vị quân sư của Hoàng đế vừa qua đời, Hoàng đế cần một vị quân sư mới thay thế. Bản thân Hoàng đế cũng là một nhà thông thái, nên ngài đặt ra một bài toán đố, tuyên bố ai giải được sẽ được phong làm quân sư. Bài toán của Hoàng đế là: cho n cái đĩa (ngài không nói chính xác là bao nhiêu) và ba cái trục: A là trục nguồn, B là trục đích, và C là trục trung chuyển. Những cái đĩa có kích cỡ khác nhau và có lỗ ở giữa để có thể lồng vào trục, theo quy định "nhỏ trên lớn dưới". Đầu tiên, những cái đĩa này được xếp tại trục A. Vậy làm thế nào để chuyển toàn bộ các đĩa sang trục B, với điều kiện chuyển từng cái một và luôn phải đảm bảo quy định "nhỏ trên lớn dưới", biết rằng trục C được phép sử dụng làm trục trung chuyển?
Vì địa vị quân sư được coi là vinh hiển nên có rất nhiều người dự thi. Từ vị học giả đến bác nông phu, họ đua nhau trình lên Hoàng đế lời giải của mình. Nhiều lời giải dài tới hàng nghìn bước, và nhiều lời giải có chữ "chuyển sang bước tiếp theo" (go to). Nhưng hoàng đế thấy mệt mỏi vì những lời giải đó, nên cuối cùng hạ chiếu: "Ta không hiểu những lời giải này. Phải có một cách giải nào khác dễ hiểu và nhanh chóng hơn". May mắn thay, cuối cùng đã có một cách giải như thế.
Thật vậy, ngay sau khi chiếu vua ban ra, một vị cao tăng trông bề ngoài giống như một kỳ nhân hạ sơn tới xin yết kiến hoàng đế. Vị cao tăng nói: "Thưa Bệ hạ, bài toán đố đó dễ quá, hầu như nó tự giải cho nó". Quan trùm cấm vệ đứng hầu ngay bên cạnh vua quắc mắt nhìn gã kỳ nhân, muốn quẳng gã ra ngoài, nhưng Hoàng đế vẫn kiên nhẫn tiếp tục lắng nghe. "Nếu chỉ có 1 đĩa, thì...; nếu có nhiều hơn 1 đĩa (n>1), thì...", cứ thế vị cao tăng bình tĩnh giảng giải. Im lặng được một lát, cuối cùng Hoàng đế sốt ruột gắt: "Được, thế cao tăng có nói rõ cho ta lời giải hay không cơ chứ?". Thay vì giải thích tiếp, gã kỳ nhân mỉm cười thâm thúy rồi biến mất, bởi vì hoàng đế tuy giỏi giang nhưng rõ ràng là chưa hiểu ý nghĩa của phép truy hồi (recursion). Nhưng các bạn sinh viên ngày nay thì có thể thấy cách giải của vị cao tăng là hoàn toàn đúng.
Toàn bộ đoạn chữ nghiêng ở trên được trích nguyên văn từ cuốn sách giáo khoa dành cho sinh viên ngành thuật toán và lập trình - "giải toán nâng cao và cấu trúc dữ liệu" (intermediate problem solving and data structures) do Paul Henman và Robert Veroff, hai giáo sư Đại học New Mexico, cùng biên soạn với Frank Carrano, giáo sư Đại học Rhode Island (Mỹ).
Bạn nào chưa từng biết Tháp Hà Nội thì cũng nên "thử sức" một chút xem sao, vì đây là một trò chơi rất thú vị. Bạn có thể bắt đầu bằng bài toán 3 đĩa, rồi nâng lên 4 đĩa. Với 4 đĩa chắc bạn bắt đầu thấy rắc rối. Nâng tiếp lên 5 và cao hơn nữa, chẳng hạn n = 1 triệu, bài toán sẽ rắc rối đến mức không ai đủ kiên trì và đủ thì giờ để thử từng đĩa một. Vậy mà vị cao tăng dám nói là dễ quá! Xin tiết lộ, ấy là vì vị đó đã sử dụng phép truy hồi - một quy tắc toán học cho phép xác định số hạng thứ n từ số hạng đứng trước nó, tức số hạng thứ n-1. Cái giỏi của vị cao tăng là ông tìm ra một quy tắc chung, tức một thuật toán chung cho tất cả các bước chuyển đĩa.
Vậy thay vì mô tả toàn bộ quá trình chuyển đĩa từng cái một như những thí sinh trước đó đã làm, vị cao tăng chỉ mô tả một quy tắc chung. Cứ làm theo quy tắc đó, lặp đi lặp lại chẳng cần suy nghĩ gì, rồi cuối cùng tự nhiên sẽ tới đích. Vì thế vị cao tăng nói rằng bài toán này "tự nó giải nó".
Trong khoa học tính toán ngày nay, phép truy hồi là thuật toán cơ bản để lập trình. Ưu điểm của phương pháp truy hồi là ở chỗ nó dùng một công thức nhất định để diễn tả những phép tính lặp đi lặp lại bất chấp số lần lặp lại là bao nhiêu. Nếu số lần lặp lại lên đến con số hàng triệu hàng tỷ thì con người không đủ sức và thời gian để làm, nhưng máy tính thì có thể giải quyết trong chớp mắt. Điểm mạnh của computer là ở chỗ nó không hề biết e ngại và mệt mỏi trước những công việc lặp đi lặp lại lên đến hàng triệu hàng tỷ lần. Và vì thế, việc cộng tác giữa computer với con người là mô hình lý tưởng của lao động trí óc trong cuộc sống hiện đại.
Về mặt lịch sử, Tháp Hà Nội được E. Lucas phát hiện từ năm 1883, nhưng mãi đến gần đây người ta mới nhận ra ý nghĩa hiện đại của nó. Hiện vẫn chưa rõ vì sao Lucas lại gọi chồng đĩa trong bài toán là Tháp Hà Nội, mà không gọi là Tháp Bắc Kinh, hay Tháp Tokyo.
Tháp Hà Nội đã mở tung cánh cửa cho tương lai khi nhiều nghiên cứu lấy Tháp Hà Nội làm điểm xuất phát đã đạt được thành tựu mới:
(1) Nâng câu hỏi của Tháp Hà Nội lên một mức cao hơn, sao cho số lần chuyển đĩa là nhỏ nhất. Các nhà toán học đã phát hiện ra rằng Tháp Hà Nội có cùng bản chất với bài toán tìm Đường Hamilton (Hamilton Path) trên một hình giả phương cấp n (n-Hypercube), một bài toán cũng rất nổi tiếng.
(2) Nhà toán học D.G. Poole đã sáng tạo ra Lược Đồ Hà Nội - một tam giác có các đỉnh tương ứng với các cách sắp xếp đĩa trong Tháp Hà Nội, từ đó tìm ra những liên hệ lý thú giữa Tam giác Pascal với Lược đồ Hà Nội. Liên hệ này đã được công bố trong một công trình mang một cái tên đầy liên tưởng: Pascal biết Hà Nội (Pascal knows Hanoi).
Hiện nay, tại một số đại học ở Australia, uy tín của sinh viên Việt Nam trong lĩnh vực lập trình được đánh giá ngang với sinh viên Ấn Độ - một cường quốc lập trình của thế giới, làm cho Tháp Hà Nội vốn đã nổi tiếng lại càng nổi tiếng hơn.
Sưu tầm
*/
// Code
#include <iostream.h>
#include <conio.h>
void DiChuyen(int n, int i, int j);
void DiChuyen(int n, int i, int j)
{
if (n==1)
{
cout<<"\nChuyen tu cot "<<i<<" sang cot "<<j;
}
else
{
DiChuyen(n-1,i,6-i-j);
DiChuyen(1,i,j);
DiChuyen(n-1,6-i-j,j);
}
}
// ham main
void main()
{
int n;
cout<<"Nhap n: ";
cin>>n;
DiChuyen(n,1,2);
cout<<endl;
getch();
}
//--------------------------------------------------------
Home
»
C
»
Học lập trình
»
Thuật toán
»
Toán rời rạc
» Code C\C++: Bài toán Tháp Hà Nội (Thuật toán đệ quy)
Thứ Bảy, 1 tháng 12, 2012
Đăng ký:
Đăng Nhận xét (Atom)
Popular Posts
-
AirlineDomains.com Make Offer TouristDomains.com Make Offer MinhphuGroup.com Make Offer TurkeyDomain.com Make Offer TouristDomain.com Make O...
-
; nhập vào 2 số nguyên a, b <10 ; tính tổng a+b, in kết quả ra màn hình .model small .code org 100h jmp Main a db ? b db ? ...
-
Trong số các chương trình viết nhạc, Encore là chương trình có tính năng trình diễn rất tiện lợi, với 11 thanh công cụ trong Palette để soạn...
-
Dịch vụ âm nhạc trực tuyến trứ danh của Châu Âu, Spotify công bố đã có 2,5 triệu khách hàng thường xuyên trả tiền để nghe các bài hát có bản...
-
Một phụ nữ người Utah cùng đứa con 17 tháng tuổi đã được giải thoát sau 5 ngày bị chính người chồng bắt làm con tin. Troy Reed Critchfi...
-
Như tiêu đề, qua tham khảo thông tin trên forum, thấy nhiều bạn than vãn về vấn đề chia ổ bằng acronis diskdirector mà chưa có lời giải đáp ...
-
Easy DriverPack liên tục ra phiên bản mới đến nay chúng ta đã có một sự cải tiến vượt bậc về giao diện và cải tiến về phương pháp nhận biết ...
-
/* Bài toán Xếp Hậu Bài toán tám quân hậu là bài toán đặt tám quân hậu trên bàn cờ vua kích thước 8×8 sao cho không có quân hậu nào có thể ...
-
Nhập dãy số gồm N số nguyên (N<100). Xác định xem đó có phải dãy số có tính chất là cấp số cộng hay không. uses crt; Var A:array[1..1...
-
/* Bài toán "Tháp Hà Nội" Tương truyền rằng ngày xửa ngày xưa, lâu lắm rồi, ở một vùng xa xôi viễn đông, thành phố Hà Nội của Việ...
0 nhận xét:
Đăng nhận xét